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Abstract 

A model for the mass-transfer-controlled spherical bubble growth in a quiescent liquid is presented. The liquid is of variable diffusion 
coefficient, which depends exponentially on the concentration. Using the method presented in Striven [L.E. Striven. On the dynamics of 
phase growth, Chem. Eng. Sci. 10 ( 1959) l-131, for a constant diffusion coefficient liquid, the differential binary mass balance was transformed 
into an ordinary differential equation, trough a similarity transformation, which was numerically solved. The final results were also compared 
with approximately analytical solutions, for slow and fast growth rates, developed by Polyanin and Dil’man [A.D. Polyanin, V.V. Dil’man, 
The method of the ‘carry over’ of integral transforms in non-linear mass and heat transfer problems, Int. J. Heat Mass Trans. 33 ( 1990) 175- 
18 I] and by the authors. 0 1998 Elsevier Science S.A. 

Keywrds: Bubble growth; Devolatilization; Mass transfer; Variable diffusion coefficient 

1. Introduction 

Polymer melt devolatilization is an industrial process in 
which low concentrations of volatile components (unreacted 
monomers, solvents, water) are removed from the polymer 
melt. This process, which is conducted at superheated con- 
ditions for the volatile components (high temperatures and 
low pressures), results in the formation and growth of bubbles 
r121. 

The large number of models for bubble growth presented 
in the literature were developed for the case in which the 
liquid had a constant diffusion coefficient. However, it is well 
known that in a solvent-polymer system, the diffusion coef- 
ficient is not constant and it depends on the solvent concen- 
tration. Furthermore, at solvent concentrations lower than 
10%~~ the diffusion coefficient may change by several orders 
of magnitude [ 31. 

In previous works, the growth of a spherical bubble in a 
quiescent liquid has been theoretically studied [ 4,5]. In their 
work it was assumed that the process was controlled by mass 
(or heat) transfer, and a similarity solution was found out 
under the assumption that the bubble radius changes as the 
square root of time. The present paper extends those theoret- 
ical works, and treats the case in which the liquid has a 
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variable diffusion coefficient. Another approach to this prob- 
lem is discussed by Shulman and Levitskiy [ 61. 

2. Theory 

A differential mass balance in a binary system assuming 
spherical symmetry, constant density, Fickian diffusion, but 
variable diffusion coefficient (D) is of the form 

a2c 2 ac dD dc 
(1) 

where c is the molar concentration of the solvent, t is the time 
and I/‘, is the radial velocity of the liquid, which is given 
approximately by 

R ‘dR 

cr= Y dt 0 (2) 

where R is the radius of the bubble. Eq. (2) is valid when the 
density of the liquid is much greater than that of the bubble. 
The last two equations will be solved with the following 
boundary and initial conditions. 

c=c, at r=R(t) (3) 

c=c, at r=a (4) 

c=c, at r=O (5) 
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In order to solve the problem, another boundary condition 
is required. Assuming that only the volatile component is 
present within the bubble, and that it acts as an ideal gas of 
constant density, then a mass balance over the volatile solvent 
in the bubble leads to 

(6) 

where Pb is the constant pressure in the bubble, Rg is the 
universal gas constant, Tis the absolute constant temperature 
in the bubble and D, is the constant diffusion coefficient of 
the liquid at the bubble’s surface. 

We present here a solution based on Striven’s classical 
paper from 1959. First, it is assumed an expression for the 
change of the radius of the bubble with time 

R(t) = 2PdD,t (7) 

where /3 is the dimensionless growth constant. Similarly to 
the case of constant diffusion coefficient, we are looking for 
a solution to Eqs. ( 1) and (2) of the form of c* = c*(n) , 
where c* is a dimensionless concentration 

c*= c-c, 

c,--c, 
(8) 

and 7 is a dimensionless similarity variable given by 

(9) 

The new variables transform Eq. ( 1) into an ordinary dif- 
ferential equation 

(10) 

where D* = D/D,. It appears that the similarity variable, used 
for the case of constant diffusion coefhcient, can also be used 
in the present case. 

Diffusivity coefficients of a polymer-solvent system, at 
different solvent concentrations, were measured (for exam- 
ple) by Duda et al. [ 31. For typical devolatilization systems 
(solvent concentrations < lo%), their results together with 
theoretical considerations can be approximated by 

D” = exp(Ac*) (11) 

where A is a dimensionless constant. According to the exper- 
iments and theory, the diffusivity coefficient increases with 
an increase in the solvent concentration. Therefore, for bubble 
growth (c, > c,), the dimensionless constant A should be 
positive. In general A depends on the solvent-polymer system 
and it is a strong function of the temperature [ 71. Substituting 
Eq. (11) into Eq. (10) results in 

+2 
[ exp(L*) +t-, exr(Ac ) ?Li 

-= 
2 * I O 

(12) 

Eq. ( 12) has to be solved with the following conditions 

c*=Oatn=B (13) 

c*=latq== (14) 

Note that Eq. (3) transforms to Eq. ( 13), and Eqs. (4) 
and (5) transform to Eq. ( 14). The last boundary (Eq. (6) ) 
may be written in a dimensionless form as 

(15) 

where Fm is the ‘foaming number’ defined by 

( 16) 

Bubble growth is enhanced by increasing Fm, since large 
growth rates are obtained at high temperatures, low pressures 
and large concentrations differences. 

A given system is characterized by two constant dimen- 
sionless numbers: Fm and A. After which the growth constant 
/3 can be evaluated from Eq. ( 12) together with Eqs. ( 13) 
and ( 14)) in such a way that Eq. ( 15) is also satisfied. Finally 
the change of the radius of the bubble as a function of time 
is obtained from Eq. (7). 

When the diffusion coefficient is constant (A=O), the 
solution of the problem is [ 51 

Fm=2~3exp(3~2)~$exp(-~2-2~)~ 

P 
(17) 

Some numerical values of Eq. ( 17) are given in Table 1. 
Striven also presented asymptotic values for p -+ 0 (slow 
growth rates) 

- 

and for @ + ~0 (fast growth rates) 

(19) 

For the case of a variable diffusion coefficient liquid 
(A # 0) , a complete analytical solution of the problem cannot 
be obtained. Some numerical results for the growth constant 
as a function of Fm and A, are listed in Table 2. 

Table 1 
Numerical values of the function /3( Fm,O) 

Fm p(FmO) 

0.001 0.0228 
0.01 0.0753 
0.1 0.273 
1 1.32 

10 10.2 
100 98.2 

1000 978 
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Table 2 
Numerical values of the function p(Fm,A) Ip(Fm,O) 

Fm A=2 A=4 A=6 A=8 A=10 

0.001 
0.01 
0.1 

1.78 3.63 8.10 19.1 46.3 
1.76 3.56 7.91 18.6 45.0 
1.71 3.38 7.40 17.2 41.4 
1.61 3.00 6.25 14.0 32.9 
1.54 2.67 5.18 i0.9 24.4 
1.52 2.60 4.94 10.2 22.3 
1.52 2.59 4.91 10.1 22.0 

10 
100 

1000 

It is convenient to define an effective diffusion coefficient 
as follows 

(20) 

With this definition, one can calculate the radius of the 
bubble as a function of time from Eq. (7), if D, is substituted 
by Deff and if p is substituted by Striven’s /3 given by Eq. 
(17). 

2.1. Slow growth rates 

At steady state and in the absence of a velocity field, Eq. 
( 1) expresses only radial diffusion 

(21) 

The solution of Eq. (2 1) together with Eqs. ( 3) and (4)) 
and assuming the correlation given in Eq. ( 11) for the vari- 
able diffusion coefficient, results in 

c* =‘ln 
A 

exp(A) - [exp(A) - l]$ 
> 

(22) 

The molar flux (N) of the volatile solvent from the liquid 
to the bubble is defined and derived from Eq. (22) to give 

N=k(c,-c,) =D, 
dc 

0 
z 

R 

= D,[enp(;) - l](G; ‘j 
(23) 

where k is mass transfer coefficient. The molar flux may be 
written dimensionlessly in terms of the Sherwood number 
(Sh) as 

(24) 

Note that when the diffusion coefficient is constant (A = 0) 
then Sh = 1. Rearranging Eq. (6)) leads to an expression for 
the growth rate of the bubble 

(25) 

Using a quasi-steady-state approach by substituting the 
steady-state solution (for the Sherwood number) into the 
equation for the unsteady-state (Eq. (25) ), and integrating 
from R = 0 at t = 0 to R = R at t = t, gives an asymptotic solu- 
tion for slow growth rates 

or 

1 FmD,t (26) 

(27) 

or 

P(FmA) exp(A) - 1 

P(Fm,O) = A J 
(28) 

Eq. (27) reduces to Eq. (18) when A=O. Eq. (28) is 
plotted in Fig. 1 and some numerical values of this equation 
are given in Table 3. By comparing Tables 2 and 3, one con- 
cludes that the approximation for slow growth rates is valid, 
in practice, when Fm < 0.1. Note also that the expression for 
the Sherwood number given in Eq. (24) is also the effective 
diffusion coefficient in this case. 

2.2. Fast growth rates 

When the growth rate of the bubble is very fast, one can 
imagine a thin shell concentration boundary layer which its 
thickness is much smaller than the radius of the bubble. In 
practice, this implies that the second term on the right hand 

loo L J 

Q 

0 2 4 6 8 10 

A 
Fig. 1. The ratio P(Fm,A) I/3( Fm,O) as a function of A for the asymptotic 
cases of slow and fast growth rates according to Eqs. (28) and (43) 
respectively. 

Table 3 
Numerical values of the function /3( Fm,A) lp(Fm,O) for slow growth rates 

A P(FmA)IP(Fm,O) 

2 I .79 
4 3.66 
6 8.19 
8 19.3 

10 46.9 
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side of Eq. ( 1) is neglected compared I:O the other two terms 
on that side. 

It is also common to solve Eqs. ( 1 ) and (2) by using a 
Lagrangian transformation, defined (for example) by Plesset 
and Zwick [ 81 as follows 

h=t (30) 

The new variables eliminate the convective term, and trans- 
form Eq. ( 1) into 

(31) 

Note that the expression on the left hand side is exact, 
while that on the right hand side is only an approximation 
close to the surface of the bubble. A similar approach has 
been applied by Plesset and Zwick [ 81 and by Barlow and 
Langlois [ 91 for the case of constant diffusion coefficient. 

If the following function is introduced 

(32) 

then Eq. (3 1) is simplified to 

(33) 

Eq. (33) has to be solved with Eqs. {3)-(5) which in the 
new coordinates transform to 

c*=Oaty=O (34) 

c*=l aty=m (35) 

c*=l atg=O (36) 

Note that Eq. (33) together with Eqs. (34)-(36) 
expresses now an unsteady one dimension mass transferprob- 
lem, with variable diffusion coefficient, in a semi-infinite 
wall. We are searching for a solution of the form of 
c* = c*( p), where p is a new dimensionless similarity 
variable 

Y 

p=G 
(37) 

The new similarity variable transform Eq. (33) into 

Substituting Eq. ( 11) into Eq. (38) results in 

2/1 dc* -= 
exp(Ac*) dp 

0 

which has to be solved with the following conditions 

Table 4 
Exact and approximated numerical values of the function P(Fm,A) / 
P(Fm.0) for fast growth rates 

A P(FmA)IP(Fm,O) 
(exact) 

P(Fm.4) IP(Fm,O) 
(approximated) 

2 1.52 I .48 
4 2.59 2.49 
6 4.91 4.69 
8 10.1 9.64 

IO 22.0 21.0 

c*=Oatp=O (40) 

c*=l atp=m (41) 

When the diffusion coefficient is constant (A = 0)) 
c* = erf( CL) and after some algebraic manipulation we obtain 

(42) 

which after substituting in Eq. ( 15) results (as expected) in 
Striven’s approximation for fast growth rates given by Eq. 
( 19). Note that the first equality of Eq. (42) is valid also for 
AZO. 

An analytical solution for the case of a variable diffusion 
coefficient liquid (A # 0) cannot be obtained. Table 4 gives 
some numerical results for fast growth rates. Note that the 
(exact) values listed in Table 4 are the same to those of 
Table 2 for the case of Fm = 1000. 

Polyanin and Dil’man [lo] suggested an approximated 
method for solving Eqs. (33)-( 36). By applying the 
Laplace-Carson transformation they derived an approxi- 
mated formula, which in terms of the dimensionless 
parameters of this work it reduces to 

;:;;j = [2j( 1 - c*)D*&*] “2 
0 

fi 
=--A-[exp(A)-A-l]“’ (43) 

The values suggested by Eq. (43) have an error of less 
then 5% compared to the exact values (see Table 4). Eq. 
(43) is plotted in Fig. 1. Note that according to our represen- 
tation, all the numerical results lie in a relatively narrow 
stripe. 

3. Conclusions 
(38) 

(39) 

The results presented here for the mass-transfer-controlled 
spherical bubble growth in a quiescent liquid, in which the 
variable diffusion coefficient depends exponentially on the 
concentration, indicate that the effective diffusion coefficient 
is much closer to D$ = 1 than to 02 =exp(A). The correla- 
tion for the variable diffusion coefficient which was used in 
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this work, was selected specially for the industrial process of 
polymer melt devolatilization. However, other types of cor- 
relations can be used and appropriated solutions can be 
obtained by the procedure described in this work. 
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Appendix A. Nomenclature 

A 
c 
D 
Fm 

fl 
k 
N 

ph 

R 

4 
Sh 
t 
T 
C 

Y 

Dimensionless constant 
Molar concentration 
Diffusion coefficient 
Foaming number 
Dimensionless function 
Lagrangian coordinate 
Mass transfer coefficient 
Molar flux 
Pressure in the bubble 
Radius of the bubble 
Universal gas constant 
Sherwood number 
Time 
Absolute temperature 
Velocity 
Lagrangian coordinate 

Greek letters 

P Dimensionless growth constant 
77 Dimensionless similarity variable 
P Dimensionless similarity variable 

Subscripts 

eff Effective 
S At the bubble’s surface 
co Far away from the bubble 

Superscripts 

* Dimensionless 
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